한국자기학회 동계학술대회 2015. 11. 27

Rare-Earth-Free Permanent Magnets : MnBi Bulks and Thin Films

이현숙, 김수민, 문홍재, 정회봉, 이우영* 연세대학교 신소재공학과

자성 재료 시장성

● '14년 28조원 규모 및 CAGR* >7%의 자성소재 시장 포기할 것인가?

현재의 기술장벽/가격장벽 극복 및 독점적 기술/시장 지속을 위한 전략은 있는가?

신영구자석의 필요성

희토류 영구자석의 이슈

Figure. Permanent magnets in a HV motor and temperature degradation of H_c for Nd-Fe-B sintered magnets. Source: NIMS, Japan 2009

NdFeB 자석의 현 문제점

* Yang-Ki Hong et al., *Metals* 4, 455 (2014)

MnBi의 특징

• Magnetocrystalline Anisotropy

 $E_{uniaxial} = K_u sin^2 \theta$

온도에 따른 Uniaxial anisotropy

J. B. Yang . et al., Applied Physics Letter. 99, 082505 (2011)

Hexagonal MnBi (LTP and HTP)

Exchange-coupled core/shell 모델

Model for Core-Shell Magnet (Two phase)

Shell Thickness (
$$\delta$$
)
 $\delta = \frac{1}{2} D_h (f_h^{-1/3} - 1)$ ----- Eq. (1)

Modified Skomski's Equations for (BH)_{max}

For
$$H_N < \frac{M_r}{2}$$

(BH)_{max} = $\frac{4\pi \left[K_s + f_h (K_h - K_s)\right]}{10^5}$ (MGOe) ---- Eq. (2)

For
$$H_N > \frac{M_r}{2}$$

 $(BH)_{\text{max}} = \frac{[B_{r_soft} - f_h (B_{r_soft} - B_{r_hard})]^2}{4} \times 10^2 (MGOe) ---- \text{Eq. (3)}$

Courtesy of Yang-Ki Hong (University of Alabama)

Theoretical (BH)max-300K of MnBi core soft Shell nanomagnet

Courtesy of Yang-Ki Hong (University of Alabama)

MnBi core-shell : NdFeB 대체 가능 경자성

S. Sugimoto, J. Phys. D: Appl. Phys., 44, 064001 (2011).

고특성 MnBi 합성 연구 동향

• MnBi Bulk: Anisotropic fully dense MnBi magnet

- High-volume fraction of LTP-MnBi: Melt-spinning & magnetic separation
 - Mn segregation from MnBi liquid through peritectic reaction at ~450°C
 - Decomposition of LTP-MnBi at ~260°C
 - Formation of MnO
- Right combination of powder synthesis method and consolidation technique

MnBi Films: High-volume fraction of LTP-MnBi

- Optimization of Bi/Mn ratio
- Preheating substrate
- Deposition and annealing in the same chamber

Deposition: Bi at glass substrate (for c-axis growth) + Mn

그룹-연도별 (BH)_{max} – MnBi Bulk

(BH)max

그룹-연도별 (BH)_{max} – MnBi Film

Year

MnBi Bulk 합성

- Compaction : 리본 내 확산 → 리본 간 확산
- ▶ Multi-composition ribbons → 균일한 초기 조성 유지
- ✤ MnBi-LTP가 제대로 생성되지 않은 powder를 분리

고 비율 Low temperature phase 제조

Melt-spinning(Rapid solidification) 효과

♦ LTP-MnBi 합성에 효과적

열처리 온도 및 조성에 따른 결정성

X-ray Diffraction (XRD)

조성 특성 (+5wt% Mn)

- Annealed at 300℃ for 40h
- LTP-MnBi: 95.1%, Bi: 4.9%

		J B Yang	Rama Rao	J Cui	Wooyoung Lee	
연도		2002	2013	2014	2014	
소속		Missouri Univ.	Delaware Univ.	Northwest National Lab.	Yonsei Univ.	
제조공정		Sintering Melt-Spinning	Arc-melting Melt-Spinning	Arc-melting Melt-Spinning	Arc-melting Melt-Spinning	
특징		Mn ₅₅ Bi ₄₅ Magnetic separation	Mn ₅₀ Bi ₅₀ 573K 24h LEBM : 0.5 ~ 3 <i>µ</i> m	Mn ₅₀ Bi ₅₀ 563K 24h ∼5µm	Mn ₅₀ Bi ₅₀ (+Mn5%) 573K 40h Magnetic separation	
	MnBi	≒ 90%	79%	91.1 %	95.1 %	
Wt (%)	Mn	-	3%	5.2 %	-	
	Bi	-	18%	3.7 %	4.9 %	

미세구조 분석 (Hot compacted magnet)

SEM(BSE) image

 $Mn_{50}Bi_{50}$ (+ 5wt% Mn) , milling time(1h)

10µm

1μm

Bi-rich

TEM image

Particle Distribution

Ball-mill

Jet-mill

Ball-mill & Jet-mill

 Different distribution in shape and size of particles

2.5 hr

1.0 hr

2.0 hr

Particle Size Analysis

- ♦ Ball-milling 시간이 증가함에 따라
 - 입자크기 분포 불균일
 - 평균입자크기 감소
 - 10 mm이상 감소 & 6 mm이하 증가
- ♦ Jet-milling 평균입자크기 가장 작고 균일한 분포

자기 특성 분석

	H _c [kOe]	M _r [emu/g]	(BH) _{max} [MGOe]	Density (g/cm³)
1.0 hr	5.6	56.8	7.3	8.10
2.0 hr	6.7	53.3	6.9	8.37
2.5 hr	7.3	52.1	6.5	8.41
Jet-mill	8.6	49.6	6.3	

- Ball-milling 시간이 증가함에 따라
 H_c 증가 & M_r 감소
- Jet-milling (inlet pressure : 50 psi, N₂)
 H_c 더욱 증가 & M_r 더욱 감소

자기 특성 분석

● Hc 증가:

Nucleation filed model

$$H_c = \frac{2K_1}{M_S}\alpha \quad - \quad N_{eff}M_s$$

H. Kronmüller et al., J. Phys.: Condens. Matter 26, 064210 (2014) Y. C. Chen et al., Scr. Mater. 107, 131 (2015)

- K_{I} : Magnetocrystalline anisotropy constant
- M_s : Saturation magnetization
- α : Misalignment of neighboring grains & width of the region of reduced magnetocrystalline anisotropy

(due to deteriorating effects of the microstructure)

 N_{eff} : Effective demagnetization factor $(N_{\perp}-N_{\parallel}) \propto crystal size$

MnBi Bulk 요약

● (Mn₅₀Bi₅₀ + 5wt% Mn) 조성에서 95.1 % LTP-MnBi 합성

Cold pressing 과 Magnetic separation 방법으로 고비율 LTP-MnBi powder 제조

- Ball-milling 시간이 증가함에 따라 입자크기 감소, Mr감소, Hc증가
 - Mr 감소 : LTP 손실때문
 - Hc 증가: 미세구조 저하효과 증가 (misaligned grain and deteriorated grain surface) 와 demagnetization factor 감소 때문
- Jet-milling은 입자의 크기와 모양이 균일 분포하게 하나 Hc증가, Mr감소

● Ball-milling 1시간으로 만들어진 powder를 이용한 hot-compact MnBi bulk자석에 서 최고 (BH)max = 7.3 MGOe 얻음

MnBi Thin Film 합성

Deposition

Bi/Mn Multilayer on Glass substrate

Annealing

• Ex-situ Annealing

• In-situ Annealing

Heating system in UHV chamber

MnBi Thin Film 합성

- 조성 제어 : Bi, Mn 증착 두께 제어
- ♦ MnBi 총 두께 = 50 nm 고정
- Capping layer AI = 10 nm 고정

샘플 종류	증착 순서	Bi/Mn 두께(nm) 비율		
Bilayer	Bi/Mn	28/22, 30/20, 32/18, 34/16, 3		
Trilayer Bi/Mn/Bi 30/20, 32/18, 34/1		30/20, 32/18, 34/16, 36/14, 3	6, 36/14, 38/12	
Multilayer	Bi/Mn (2L)	34/16	Bi/Mn =34/1 6	
	Bi/Mn/Bi (3L)	17/16/17		
	Bi/Mn/Bi/Mn/Bi/Mn/Bi/Mn /Bi/Mn (10L)	6.8/3.2/6.8/3.2/6.8/3.2/6.8/3 .2/6.8/3.2		

Annealing 조건에 따른 자석 특성

Annealing 온도 및 시간 조건

Bi/Mn=36/14

● Annealing 조건: 350°C, 1.5hr

Bilayer: Bi/Mn ratio

Bi/Mn Ratio	Hc (kOe)	Mr (emu/ cm3)	BHmax (MGOe)
27/23	4.3	392	5.3
30/20	2.5	445	6.6
36/14	2.4	372	5.4

미세구조 분석

SEM(BSE) image

Bi27/Mn23

● Bi 증가할수록 MnBi phase 증가 & Mn-rich 감소 (Mr 증가 & Hc 감소)

Trilayer: Bi/Mn Ratio

● Mn이 위아래층으로 쉽게 확산해 들어가기 위한 trilayer 에서 자석 특성 확인

Trilayer: Bi/Mn Ratio

Magnetic Properties

Multilayers

Bi/Mn = 34/16

Multilayers

Magnetic Properties

Multilayers

Structural Properties (XRD)

Multilayers 자석특성 분석

Layer number dependence

MnBi Thin Film 요약

● In-situ annealing으로 산화억제를 함으로써 MnBi 박막 자석특성 향상

● Bi(34nm)/Mn(16nm) 두께 제어를 통한 MnBi 박막 조성비율 최적화

● Bi/Mn 층수 제어를 통한 MnBi 박막 자석 특성 최적화

Bi(34nm)/Mn(16nm) 조성에서 Multilayer 보다는 Bilayer 일때 최고특성 (BH)max = 8.6 MGOe

Acknowledgements

OOSCO 포스코 국내위탁 연구 사업 교환결합 기반 초고성능 복합 영구자석 개발 (2013. 12. 16 ~ 2015. 01. 15)

향후 계획(MnBi Bulk)

기존 공정을 대체할 신공정 개발

• Ball에 의한 오염 억제 및 순도 증가 입자크기 균일화 및 결정립 성장 억제 효과

DC pulse / Induction 소결

- Heating 방식 변경을 통한 승온 속도 증가
- 결정립 성장 억제
- 공정시간 단축

소결조제 / 상안정화 원소 첨가

소결조제 첨가

MnBi Metallic glass

- 융점은 높지만 연화점이 낮은 metallic glass를 powder mixing법으로 첨가
- FeSnPCBSi , CrFeMoCBY, CoFeSiBCr …등
- 밀도 증가 및 MnBi와의 Exchange coupling 효과로 자기특성 증대 효과

상안정화 원소 첨가

• Pr,Cu, Co 등의 원소를 첨가(침입형,치환형) • MnBi-LTP 상안정화를 통한 보자력 증대 효과

신물질 첨가를 통한 자기특성 향상

교환결합기반 경/연자성 Core/shell

경/연자성 Core/shell 이종구조 powder 제조

- 교환결합기반 경/연자성(MnX/FeY) 코어쉘 이종구조 powder 제조
- 경자성(MnX)의 높은 보자력을 유지함과 동시에 연자성(FeY)의 높은 포화자화값을 통해 전체적인 자기특성 향상 효과 기대

교반시스템을 도입한 스퍼터링 공정

New type of powder coating system using sputtering

- 스퍼터링 장비에 wire 타입의 blender를 장착
- 경자성에 연자성을 골고루 입혀 교환결합 기반 고 특성 Core/shell 이종구조 복합자석 제조

교환결합을 통한 자기특성 향상

향후 계획 (MnBi Films)

FeY (Y=N.Co)

Interlayer (Ti, Ta)

Glass Substrate

확산방지층이 삽입된 경/연자성 layer 간의 교환결합을
 통한 자기 특성 증대

Dream on Energy Magnet

