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Sensor Variables
Secondary

Signal

Primary

Signal

Mechanical Thermal Electrical Magnetic Radiant Chemical

Mechanical

(Fluid) Mechanical and 
Acoustic Effects :

eg, Diaphragm,

Gravity Balance,

Echo Sounder

Friction Effects

(eg, Friction

Calorimeter)

Coolings Effects

(eg, Thermal Flow

Meters)

Piezoeletricity

Peizoresistivity

Resistive, Capacitive,

and   Inductive Effects

Magnetomechanical 
Effects : eg, 
Piezomagnetic

Effect

Photoelastic Systems

(Stress-induced

Birefringence)

Interferometers

Sagnac Effect

Doppler Effect

Thermal

Thermal Expansion

(Bimetalic Strip, 
Liquid-in-Glass and 
Gas Thermometers, 
Resonant Frequency)

Radiometer Effect

(Light Mill)

Seebeck Effect

Thermoresistance

Pyroelectricity

Thermal (Johnsen)

Noise

Thermooptical 
Effects

(eg, in Liquid 
Crystals)

Radiant Emission

Reaction 
Activation 

eg, Thermal                   
Dissociation

Electrokinetic and Joule (Resistive) Heating Charge Collectors Biot-Savart’s Law Electrooptical Electrolysis

Electrical

Electrokinetic and 
Electromechanical 
Effects :

eg, Piezoelectricity

Electrometer

Ampere’s Law

Joule (Resistive) Heating 

Peltier Effect

Charge Collectors

Langmuir Probe

Biot-Savart’s Law Electrooptical 
Effects :

eg, Kerr Effect

Pockels Effect

Electroluminescence

Electrolysis

Electromigration

Magnetic

Magnetomechanical 
Effects :

eg, Magnetostriction

Magnetometer

Thermomagnetic Effects : 

eg, Righi-Leduc Effect

Galvanomagnetic Effect

eg, Ettingshausen Effect

Thermomagnetic Effects : 
eg, Ettingshausen-Nernst 
Effect

Galvanomagnetic Effects : 

eg, Hall Effects,

Magnetoresistance

Magnetooptical 
Effects 

: Faraday Effect

Cotton-Mouton

Effect

Radiant

Radiation Pressure Bolometer

Thermopile

Photoelectric Effects : 

eg, Photovoltaic Effect

Photoconductive 
Effect

Phtorefractive Effects

Optical Bistability

Photosynthesis,

-dissociation

Chemical

Hygrometer

Electrodeposition Cell

Photoacoustic Effect

Calorimeter

Thermal Conductivity

Cell

Potentiometry, 
Conductimetry

Amperometry    

Flame Ionization

Volta Effect 

Gas Sensitive Field Effect

Nuclear Magnetic

Resonance 

(Emission and 
Absorp-tion)

Spectroscopy

Chemiluminescence



Quantities to be 
measured

Transfer
characteristics

Measured 
quantity 

Temp.
Force

Linearity

Important Sensor Variables

Force
Torque
PH
Light intensity
Current
Voltage
Magnetic Field
Electric Field

Linearity
Resolution 
Noise 
Measuring range
Frequency range 
(dynamic response)

Charge
Voltage
Current

Frequency
Phase



Response Curves of the Sensors



Trends in Sensor Development

MEMS based sensors
Bio-sensors
Smart and intelligent sensors  
Sensors for networking
Sensors for home automation



Sensor in Automobiles



Definition of Magnetic Sensor

Sensors which are associated with the laws and 
effects of magnetic and electromagnetic fields

Why are Magnetic Sensors Important?Why are Magnetic Sensors Important?

1) High reliability   :  Military : Flux-gate, Search coil  

Automobile : ABS, non-contact angle 

Air and space : Magnetic torquer, Flux-gate

2) High Temperature:  LVDT, Flux-gate

3) High radiation      :  Eddy current probe and LVDT used in nuclear

power plant



Magnetic Effects for Sensors
Year Effect Explanation Technical Use

1842 Joule effect Change in shape of a ferromagnetic body with 
magnetization (magnetostriction)

In combination with piezoelectric elements for 
magnetometers and potentiometers

1846 ΔE effect Chang in Young’s modulus with magnetization Acoustic delay line components for magnetic 
field measurement 

1847 Matteucci effect Torsion of a ferromagnetic rod in a longitudinal field 
changes magnetization

Magnetoelastic sensor

1856 Magnetoresistance

(AMR)

Change in resistance with magnetic field Magnetoresistive sensors

1858 Wiedemann effect A torsion is produced in a current carrying 
ferromagnetic rod when subjected to a longitudinal 
field

Torque and force measurement

1865 Villari effect Effect on magnetization by tensile or compressive 
strength

Magnetoelastic sensors
strength

1879 Hall effect A current carrying crystal produces a transverse 
voltage when subjected to a magnetic field vertical to 
its surface

Magnetogalvanic sensors

1903 Skin effect Displacement of current from the interior of material 
to surface layer due to eddy currents

Distance sensors, proximity sensors

1931 Sixtus Tonks effect Pulse magnetization by large Barkhausen jumps Wiegand and pulse-wire sensors

1962 Josephson effect Tunnel effect between two superconducting materials 
with an extremely thin separating layer; quantum 
effect

SQUID magnetometers

1987 GMR effect Quantum mechanical magnetoresistance effect 
observed in thin-film structures composed of 
alternating ferromagnetic and non-magnetic 
conductive layers

Magnetic field sensor

Sprintonics

1994 GMI effect Large variations that the electrical impedance of some 
materials exhibits as a function of an external 
magnetic field

Magnetic field sensor



Principle of search coil type magnetometerPrinciple of search coil type magnetometer
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Sensitivity and Noise of Air Cored Induction Coil

HfDnHAnnU ⋅⋅⋅⋅⋅=⋅⋅⋅⋅=Φ⋅⋅= 0
2

2

0max0
2

           µ
π

µωω

2

0
22

0
0

µπ ⋅⋅
=

⋅
=

Dn

Hf

U
S

 V2π








⋅⋅
=





⋅
⋅

⋅= −
2

-97
0

m Hz  nT

V
10    

m A 

S   V
104πµ







⋅

⋅⋅= −

Hz  nT

V
10

2

92
2

0 DnU
π

Air-cored induction coil in a time-varying magnetic field.
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Air-cored coil output voltage U0 at a magnetic field x frequency product 

1 nT · Hz versus diameter D with number of turns n as parameter
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High permeability core induction coil

Magnetic field pattern around high permeability core 

when it is inserted into a homogeneous field. It is valid 

for low frequencies and if the coil, indicated at the middle 

of the core, is without current.



Magnetization of a high permeability core
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Demagnetization factorDemagnetization factor
N of prolate ellipsoids
and cylindrical rods
(descending curves) and
core permeability μc

(ascending curves) of
cylindrical rods versus
the length-to-diameter
ratio m of the rod with
material permeability μr

as parameter.



Core permeability μc of cylindrical rods versus the
material permeability μr with length-to-diameter ratio
m of the rod as parameter, after



Minimum noise equivalent magnetic field spectral density of 
an induction coil sensor with high permeability core versus 
sensor weight Ws (at length-to-diameter ratios m = 50 and 
100, permeability μr =  10000 of the core material, and f =  
1 Hz).



Induction coil sensors with electronic amplifier
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Frequency responses of the search coil

Frequency responses of the
sensitivity SA and the output voltage UA

of an induction coil sensor with a voltage
amplifier at a constant magnetic field
amplitude.

Resonance step-up of the
sensitivity SA at different
values of the damping D.



Sensor with transformer coupled negative feedback to the coil.
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Frequency response of the output voltage UA of an 
induction coil sensor with negative feedback 
transformer coupled to the coil





Applications of search coil magnetometer





Developed search coil magnetometer using 
amorphous ribbon

Experimental setup for the effective permeability measurement



Relative permeability depending on the numbers of ribbon(a) 

and the air gap between ribbons. 



Relative permeability depending on the number of ribbons 
for the different air gap between ribbons. 



Relative permeability depending on the total number of 
ribbons for the different air gap between ribbons. 



10 pT

100 pT

1 pT

Noise spectrum of the developed search coil magnetometer.
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Current Measurement

Arrangement for noninvasive 

current measurement using an iron 

core. The current to be measured 

produces a proportional magnetic 

field which can be measured in the 

air gap.

Characteristic curve produced by 

the current



Arrangement for indirect noninvasive 

current measurement using the 

compensation principle. An iron core as 

represented in Figure 3-29 is held field 

free by injection a current into a 

compensating coil wound on the core 

which offsets the field generated by the 

current being measured. The Hall effect 

sensor in the air gap serves as a null 

indicator.

Circuit diagram for AC-power 

measurement using a Hall effect 

sensor.



DC Power Measurement

Circuit diagram for DC-

power measurement using a 

Hall effect sensor.



Noncontact Position Sensing

Galvanomagnetic components for sensing the position of permanent magnets 

and magnetically conductive materials.



Current Sensor Based on Hall Sensor 

and Magnetic Core for Hybrid Vehicle

K.H. Yeon1, S.D. Kim1, and D. Son2 
1Auto industry co.,14F Hanshin IT tower Guro Gu, Seoul, Korea
2Hannam University,Ojung dong 133, Daejeon Rep. of Korea
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Developed Current Sensor

Magnetic core

Hall sensor

PCB
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� Frequency bandwidth

Gain bandwidth : 3 MHz
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Temperature : 25℃

Frequency bandwidth : 100 kHz

Sensor output voltage vs. frequency

at applied current of 40 A.turns.                   
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Current : 40A.turns

Frequency range 100 Hz ~ 100 kHz



What is Magnetoresistance

Magnetoresistance effect(AMR)
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Two bridge configuration for

rotational angle measurement



measurement angle more than 180o



자동차 Engine Management System





Inductive and Eddy Current 

Sensors Excited by Permanent Magnets

tNtU  d/d)( φ⋅−=

construction of an inductive

sensor (courtesy VDO Adolf sensor (courtesy VDO Adolf 

Schindling AG).  

1) constant socket,  

2) terminal package, 

3) permanent magnet,

4) cap,  

5) soft magnetic core, 

6) coil,  

7) plate,  

8) blade connector.



γγ

Sensor with yoke. Change in the magnetic flux with 

varying air gap. Continuous lines: 

minimum air gap; dashed lines: 

maximum air gap.



C-shaped sensor.

Sensor with radially 

magnetized 

permanent magnet.



Signal Conditioning

Output voltage U of a DC-excited sensor with permanent 

magnets, when a single iron object passes by.



Schematic electrical diagram of an inductive sensor.



Linear Variable Differential Transformer

AC-Excited Sensors for Linear Movement

Principle of construction of an LVDT.



Electrical circuit of an LVDT.
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Signal Conditioning

power                                               
supply

carrier  
gen.

auto.
amp.
control.

LVDT
carrier
amp.

demod-
ulator

phase

shifter

power                                               
supply

carrier  
gen.

passive
demod-
ulator

LVDT
DC
amp.

Block diagram of a carrier amplifier system.  

Block diagram of a DC amplifier system.



Variable Inductive Sensors

Principle of construction 

of the VLP sensor.

Principle of a bridge 

circuit.
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Applications and Properties

Principle of a construction of a force transducer 

(courtesy Hottinger Baldwin Messtechnik)



Vibration/acceleration sensor.



Signal Conditioning

Schematic electrical diagram of a force transducer connected with an 

amplifier (courtesy Hottinger Baldwin Messtechnik GmbH).



Variable Gap Sensors

)///( FeFe
2

0 LLllANL µµµ +⋅⋅=

FeFe
2

0max / lANL ⋅⋅⋅= µµ

Construction of a variable gap sensor.

Characteristic of a variable gap sensor.  



Construction of a differential 

cross-anchor sensor.

Output voltage U versus core 

position x.  ± a : limits of the 

linear rage.



Applications of differential cross-anchor sensors.



AC-excited Sensors for Rotary Movements

Principle of construction of a synchro.

α  cos10 ⋅⋅= UKU y

)120-( cos10 °⋅⋅= αUKU z
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)240-( sin3100 °⋅⋅⋅=−= αKUUUU zyzy

α sin3100 ⋅⋅⋅=−= KUUUU xzxz



Application to the Torque Sensor

Principle of construction of a torque-type synchro.

Torque versus angular 

difference.

)( sin~ rt αα −⋅KM



)( cos~ rt1r αα −⋅UU

Principle of construction of a control-type sensor.



Output voltage versus 

angular difference.

Principle of construction of a differential sychro.



Eddy Current Sensors

tBE d/d  curl −=
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Eddy Current Tachometer

Construction of a speedometer (courtesy VDO Adolf Schinding AG).  1) spindle,  2) bearing,  

3) holding spring,  4) iron yoke,  5) eddy current cup,  6) shaft of the magnet,  7) support of 

the magnet,  8) temperature compensation,  9) permanent magnet,  10) torsion spring.



Proximity Sensors

Schematic diagram of a proximity sensor.

Output current of a 
proximity switch versus 
distance



Inductive Flowmeters
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Development of magnetic phase detection 

sensor for steam generator tube

Dirac Son1, Kwan-Sang Ryu2, Duck-Gun Park3

1Hannam University, Daejeon, Rep. of Korea
2Korea Research Institute of Standards and Science, Daejeon, Rep. of Korea
3KoreaAtomic Energy Research Institute, Daejeon, Rep. of Korea



Introduction

The layout of pressurized water reactor (PWR) components

Primary side Secondary side (non-radioactive side)
(radioactive side)



The Structure of SG(Steam Generator)
(degradation mechanism)

Secondary SidePrimary Side

SCC

A B

A-B

Steam outlet

Anti-vibration

SCC

Fretting

Wall thinning

IGA

U-bend

In commercial power plants SG:
- height up to 21 m 
- weight up to 800 tons 
- 2~4 sets of SG were installed 
- SG can contain from 3,000 to

16,000 tubes, each about 20 mm
in diameter. 

Primary coolant outlet Primary coolant inlet

Anti-vibration
bars

Tube
support
plate

Tubesheet

IGA

SCC

Pitting

SCC

Inside 
Tubesheet

Top of 
Tubesheet

by S.S.Hwang of KAERI

Denting

Sludge pile

in diameter. 

The SGT is made of nickel based
Inconel alloy, which is composed 
of 75% Ni, 16.5%Cr and 8.15%Fe

-Degradation mechanism : corrosion, 
pitting, denting, inter granular attack

-Inspection : Eddy current Testing(ECT)



Permeability Variation Clusters (PVC)

(Ferro-magnetic phase)
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How can we detect magnetic phase

(PVC)selectively from the flaws in SGT
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The hysteresis loop of the tensile tested 
specimen at room temperature (a), and 
tensile tested at high temperature (b). 

The magnetic phase can be created under the high temperature and
pressure conditions, which is correspond to the stress corrosion cracking
in the SG tube in the NPP
(Bruemmer, S.M.; Charlot, L.A. & Henager, C.H. (1988). Corrosion, 782).



Principle of ECT

?

If we can separate magnetic phase selectively from the

flaws using magnetic sensor, the reliability of EC in SGT

inspection will be greatly enhanced

?



Structure of the permeability 

sensor

Dimension  and photograph  of  U-shape 

sensing yoke

Design of Magnetic Sensor for PVC

sensor sensing yoke

Photograph of the completed sensor, front side (above) and rear side (bottom)
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Electronic Circuit of Magnetic Sensor
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Electronic circuit diagram of the magnetic sensor



Photograph of the completed measuring system data acquisition 

software in PC and probe scanning system.

Experimental Setup for Magnetic Sensor

Reference material Scanning System Software LabVIEW



Reference Material (1) : Normal defects and PVCs

Longitudinal and transverse defects

Def.# W L D Remarks

1 0.2 5.00 0.213 (20 %) Inner defects

2 0.2 5.00 0.427 (40 %)

3 0.2 5.00 0.213 (20 %)
Outer defects
PVC(1018)4 0.2 5.00 0.427 (40 %)

5 0.2 5.00 0.639 (60 %)

6 0.2 5.00 0.852 (80 %)

7 0.2 5.00 0.639 (60 %) Inner defects

8 0.2 5.00 0.852 (80 %)

- 1 and 2 are inner defects,

- 3,4,5, and 6 are outer defects with PVC,

- 7 and 8 are inner defects



PVC

PVC

Defect Defect

For longitudinal defects and PVC For circumferential defects and PVC

!! ECT is very difficult to detect circumferential defects

We can distinguish PVCs and defects, and longitudinal and circumferential defects



Flux-gate Magnetometer

One core sensor Two core sensor



3-축 flux-gate Magnetometer의 계략도

Sensorpia Co.
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조립된 마그네토미터의 사진

Sensorpia Co.

Analog PCB

Digital PCB



Sensorpia Co.
선형도(linearity)
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마그네토미터의 noise 특성 Sensorpia Co.
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Magnetometer for KoDSAT
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Resistance : 193 ohm 

Photograph of Magnetic torquer

Photograph of KoDSAT

Photograph of 

3-axis Fluxgate 

Magnetometer 

Photograph of Magnetic torquer



Application of magnetometer

Moon magnetic field
measurement

Telescope with direction indication





Joule Effect (Magnetostriction)

ϕ2cose
l

l
=

∆

0=
∆

+
∆

+
∆

b

b

a

a

l

l



Actuator using Terfenol-D
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Magnetostrictive displacement sensor



Hysteresis loops under 

tensile stress σ.

(a) Crystalline 68% NiFe 

λs = +25 · 10-6;

(b) crystalline pure Ni, λs  

= -35 · 10-6;

Villari Effect ( Inverse of Joule Effect)

= -35 · 10-6;

(c) amorphous Co-based 

alloy,

λs  = -3,5 · 10-6.

ϕσλ 2sin
2

3
⋅⋅= smeE



γ

Permeability depending on the stress

σλµ
µ

1

3

2

Y

J

so

s

r =

γ

Calculated magnetization curves under stress.



Variation of magnetization curve by an applied 

tensile force (Co-based amorphous alloy).



Alloy Requirement

Materials for magnetoelastic sensors.



Why amorphous magnetic materials are important

Stress-strain curves of several materials.

Coercivity and hardness of several materials.



Principles of magnetoelastic sensors



Non-contact torque sensor

Principle of cross torductor torque

sensor and flux pattern of sensor

poles on the surface of a  shaft  

a) without and b)with torsional load

Equivalent magnetic circuit of 

cross type torque sensor



Helices of principal tensile and compressive stress on the surface of 

a shaft subjected to torsion [32]. Correlated changes of permeability 

are detected by four-branch yoke system with sensing coils 1,2,3 

and 4 and a common excitation pole



Examples of torque sensors

Four-branch type torque sensor

heads. Pole structures realized

by commercial multi-pole

ferrites 14 and 18 min in

diameter, (diameter of sensor

h e a d 1 7 a n d 2 4 m m ,

respectively)      respectively)      



Principle of Ring Torductor torque transducer.  

(a, b) Physical structure, (c) evolution of the 

shaft surface under the transducer poles A and B
Ring torductor for measuring 

torque on ship propeller shafts 

(shaft diameter ca. 500 mm) 

(Courtesy ASEA Brown 

Boveri AG).



Principal designs of coaxial torque sensors



Schematic diagram of data processing 

electronics of a torque sensor



Extensometer. (a) Construction of strain sensing element using 

amorphous ribbon wound core; (b) configuration of lumped 

windings.



∆E effect of an amorphous FeNi-based 

alloy (Fe40 Ni38 Mo4 B18). Hs: saturation 

field.

Magnetically tunable delay line.



Torque Sensors using Amorphous wire





Sixtus tonk효과(large Barkhausen효과)

Hysteresis loops of a Wiegand wire for different reset fields.



Curie 온도 및Hopkinson효과

Relation between normalised 

saturation polarisation and 

normalised Curie temperature.

Permeability of a Mn-Zn ferrite as 

a function of temperature and field 

strength 



Conclusions

1) Magnetic sensor 는 자동차, 공장자동화, 항공우주 및 군사용으로
많이 사용되고 있다.

2) 새로운 소재개발은 자기센서의 성능개발에 직접적인 영향을 준다.2) 새로운 소재개발은 자기센서의 성능개발에 직접적인 영향을 준다.

3) 센서의 개발을 위해서는 다양한 전공지식이 요구된다.

(물리학, 재료공학, 기계공학, 전자공학) 

4) 센서분야가 고부가가치를 창출하는 부품사업이다.

5) 핵심부품을 생산하는 중소기업의 item으로도 적절하다.


