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History

1600 De Magnete (William Gilbert): new L. electricus,
L. < electrum, GK. < nAekTpov, amber.

1838 Richard Laming:
Atom = core matter + » ¢ unding (Uit electric charge).

1846 William Weber: Electricity = 3_ fluid™) + 37 fluid(~) .
1881 Hermann von Helmholiz: “behaves like atoms of electricity.
1891 George Johnstone Stoney: electron = electr(ic) + (i)on.



Discovery

Crookes tube:

1869 Johann Wilhelm Hittorf: A glow emitted from the cathode.

1876 Eugen Goldstein: Cathode rays.

1870 Sir William Crookes: The luminescence rays comes from
the cathod rays which
» carried energy,
» moved from cathod to anode, and
» bent in magnetic field as negative charged.

1890 Arthur Schuster: The charge-to-mass ratio, ¢/m



Discovery

1892
1896

1896

1896
1896

1900
1909

1913

Hendrik Antoon Lorentz: mass < electric charge.

J. J. Thomson with John S. Townsend and H. A. Wilson:
e/m was independent of cathode material.

George F. Fitzgerald: The universality of e/m and again
proposed the name electron.

Henri Becquerel: Radioactivity.

Ernest Rutherford designated the radioactive particles,
alpha (a) and beta (5).

Becquerel: The §-rays have the same e/m as electrons.

Robert Millikan and Harvey Fletcher: The oil-drop
experiments (published in 1911).

Abram loffe confirmed the Millikan’s experiments.



Fundamental properties

Mass: m = 9.109 x 103! kg = 0.511 MeV /c?,
where ¢ = 2.998 x 10® m/s.

Charge: e = —1.602 x 10712 C

Spin: Intrinsic spin angular momentum with

» 5% = s(s + 1)h?, the square of the spin magnitude,
where s = +1 and 7 = /- = 1.0546 x 1073* Js.

» 1= —gups, the spin magnetic moment,
where pp = 52~ = 0.927 x 1072 emu

2me

and g is the Landé g-factor, for free-electron g = 2.0023.
Size: A point particle, no larger than 10722 m,

> re = 28 = 2818 x 10~ '° m, the classical electron radius,
where a = ﬁ;c = ﬁ = 0.00730, the fine structure
constant.

> Ac = £ =3.862 x 10~ '3 m, the electron Compton

wavelength.



Free relativistic quantum fields

A theory with mathematical beauty is more likely to be correct than an
ugly one that fits some experimental data. — P. A. M. Dirac



The Schrodinger equation
The time development of a physical system is expressed by the
Schrédinger equation

9
ot

where the Hamiltonian H is a linear Hermitian operator. For an
isolated free particle, the Hamiltonian is

th— = Hv

_

- 2m
and the quantum mechanical transcriptions are

0 h
H h— -
— 17 e p—>Z,V

leads to a relativistically incorrect equation

81/1 h?

" o
875 2mV Y-



Systems of units
It is convenient to introduce the natural unit system for
describing relativistic theories.

» The natural unit system is defined by the constants
c=h=1.

» In this system,
[length] = [time] = [energy] ' = [mass] .

» The mass of a particle is equal to the rest energy (mc?) and
to its inverse Compton wavelength (mc/h).

» The thermal unit system is the same as the natural unit
system with the additional Boltzmann constant kg = 1.
» In this system, [energy| = [temperature].
» Especially, 1 eV = 11605 K.
» The atomic Hartree unit system is defined by the constants
h=e2=m=1,butec=a"1.
» The atomic Rydberg unit system is the same as the atomic
Hartree unit system, but 2¢? = 1.



Special theory of relativity
Einstein concluded that the Maxwell’s equations are correct.

£> /C7C

Sl

So every physical law has to satisfy the condition ¢ = ¢'.
The corresponding space-time transformation group is called

» Homogeneous Lorentz group if A = 0,
» Poincaré group or inhomogeneous Lorentz group if A # 0.



Relativistic notions

» z is the four-vector of space and time.

» oM (u=0,1,2,3) are the contravariant components of this
vector.

» z, are the covariant components effected by the
Minkowski metric tensor,

1 0 0 0
0 -1 0 0
Juv =9 0 0 -1 0
0 0 0 —1

» ot = (2%,x) and z, = gua” (z Ei:o gm,x”> = (2% —x).

» The scalar product is defined by = - z = z#z,, = t? — x>.

» The equation for the lightcone: z* = x+x, = 0.

» The displacement vector is naturally raised, z*, while the
derivative operator is naturally lowered

0 0
O = ggn = (a:cov)



Lightcone

xO

future

timelike

7

elsewhere

elsewhere

spacelike

past



Relativistic quantum mechanics

v

Momentum vectors are similarly defined p* = (E, p,, py, p-)
and the scalar product is defined by

v

p-p=p'p,=E*—p p=m

v

Likewise p -z = p*z, = Et — p - x.
The quantum mechanical transcriptions will be (7 = 1)

v

E =—iV

= i@a p
or pt =i

v

For a relativistic free particle, we may try a relativistic
Hamiltonian H = /p? + m? (c = 1) to obtain

R ()



The causality violation
The amplitude for a free particle to propagate from xg to x:

U(t)

(x|e™""x0)
(x| e VPR )
(21)3 /dgp pelt VPRI pip-(x—x0)
i
1 > N/
/ dp psin (p |x — xq|) e VP
272 |x — xo| Jo

At the point 2 >> t? (well outside the lightcone), the phase
function pz — t+/p? + m? has a stationary point at p = i —2%
We will have the propagation amplitude as

Va2 —t2"

Y

which is small but nonzero outside the lightcone.
Causality is violated!



The action principle
The action S in local field theory is defined by the time integral
of the Lagrangian density £ of the set of the components of the
field ¢,(x) and their derivatives 0,,¢,(z):

S = /U£(¢r>8u¢r) d4$7

where a general spacelike plane ¢ at an instance 7 is
characterized by an equation of plane

o: n-x+7=0 n?=+1,

where n# is a unit timelike normal vector.
The variation of the action is

B 7 (0L oL 4
68 = /UU (8@ 8”8( M¢T>>50¢rdx+F(J)—F(Jo),

_ FY. W>6 R
Fo) /K 3@u)” oI ) O g 0] o



The equation of motion

If we choose a variation which vanishes at the boundary planes
oo and o, the observables at the boundary are unchanged for
the total variation 6¢, = éo¢, + 0,0, 0z,

F(o) = F(o9)=0

77 OL oL
55 — / <—a>5 e —o.
\os, %56, ) ¢

This equation is satisfied if the integrand vanishes at every
point:
oL 9 oL
¢y "0 (0udr)
These are the field equations. Note that we may write for the
general variation of S simply

=0.

0S5 = F(O’) — F(O‘Q).



Lorentz transformations
The components of a four-vector referred to two different inertial
systems with the same origin are related by a homogeneous
proper Lorentz transformation, which is defined as the real
linear transformation which leaves z2 = 2/ = 0 invariant,

:U/N — A;Lllmu; Au A)\V ,u)\
and which, in addition, satisfies
AF, real,  det (AM,) >0, A% > 0.

The inhomogeneous Lorentz transformation involves
displacements, such that 2’ = Lzx:

L: 2'"=Atz" + )\,

where \* is a four-vector independent of x. The field
component ¢, (z) transforms according to the proper Lorentz
transformation:

o' (Lz) = S.°¢ps(x).



Lorentz group
For the Lorentz transformation of the field

¢’ (¢) = U(L)¢r(x)UH(L),

we observe that the operators U (L) form a representation of
the Lorentz group:

U(LaLy) = U(L2)U(Ly).
The infinitesimal Lorentz transformations are defined by
A =g+ A= ay,
where «,,” and «,, are infinitesimals offirst order. The relation
AR AN = g

then leads to
oy + ayy = 0.



Poincaré group
The infinitesimal part of the transformation U may be written
explicitly
U=1+iK,

where the generator K is written as a linear function of the «’s:
1
K= §M“”a,w + Ptoy, M =—-M"H.
Lie’s theorem asserts that such operators X, satisfy

XraX Zcrs X,

where the coefficients ¢,;' are called the structure constants of
the group. This relation takes the form

[P*, P"] = 0,
—q |:M,u,1/’ P/\] — g;wPV . gVAP,u’
—i [MM MP?] = gMPMYT — ghoMVP 4 g7 MM — gVP NP



Poincaré group

The transformed field components ¢,” under the opertator U
may be written

o =Up U =1 +iK) ¢, (1 —iK) ~ ¢, +1i K, dr].

So we have the increment of the field compoents after the
transformation

6y =i [K, ¢y
The infinitesimal part of the transformation matrix S,.*:

1
Srs = 51"8 + era Ers = §Ers,ul/am/’
where the coefficients X,.°#” = —%,.°"¥. The increment of ¢,
becomes

560 (r) = 5[5 6u() + (0 — 2"0") 61 (2)] s — 000 ().



Momentum operators
We obtain the defining relations for the momentum operators:
i[M*, o (x)] = 5 os(a) + (20" — 270) ¢ (2),
i[P*, or(z)] = —0"r().
Under an infinitesimal Lorentz transfromation the plane o
suffers a displacement:
ozt = ot 2¥ + o,
and the field at the displaced point = + z is ¢, + d¢.., with
361 (2) = 35,64 ()
The generating operator F(o) yields

1
F(o) = / [T“V (apz? + ay) — §7TWETSW)¢SOJW doy,
g

where oL
't = , TH =gl ¢, — g L.
9 (0pdr) =9




Momentum operators

We write F'(o0) in the form
Lo 1
F(O’) == iM OZMV + P a/u

M* = / (TPEgY — TP gt — 7" P8, ¢, ) do),
o

Pt = / T dg,.

qThe operator F (o) is the generating operator for the variation
of the field at a point on the boundary o: This variation is

1
Sody = 3 [(E 5 g + (210" — 2V M) ¢p] ypu — O vy,

= i[F(0),r],

which must hold for arbitrary values of the ten parameters o,
and a,,.



Momentum operators

So we obtain the set of equations

iMY o] = B hs + (a0 — 2"0") o,
{ [Pl" ¢T] = _a”d)r'

The tensor T*" is called the canonical momentum tensor,
while the angular momentum tensor M*” may be split into two
parts, defined by

M* = LP 4+ NH”  (total angular momentum),

L = / (TPHx” — TP z") do, (orbital angular momentum),
g

NW = —/wrpE,.S“”qbsdap (spin angular momentum).
g



Conservation laws

For any set of functions f*(x) which vanish sufficiently fast in
spacelike directions

/ Oufrdte = — / frdo, + / frdo, =0,
o0 a a0

if the conservation law holds, so that we have
Ouft =0.

Applying this results to the integrands of M*” and P*, we
obtain

TH — TV 4 §,H* = 0,

9T = 0,
with HPY = a'P%, M, = —HPH,



Conservation laws

Defining the symmetrical momentum tensor
M = TH 4 3/)@;7#”’

where

1
Gouw = )

we obtain the following tensor properties

(Hppw + Huwp + Hypp) ,

oM = @VH

P = / 0" dg,,,
9"0,, = 0.



Commutation rules
The generating operator is given by

F(o)=— / n"Hépdoy,
and the arbitrary variation of the field components are

06.(0) =i [.(a), [ 7 W30n)do| . oracon

For any three operators A, B, and C, the Jacobi identity is
[A,BC] = [A,B]C+ B[A,C]
= {A,B}C—-B{A,C}.

So that for the three operators ¢,.(x), 7#(y), and d¢s(y), we
have two possibilities

(a) [¢T(x>v 5¢S(y>] =0, [¢T(‘r)7 ﬂ—su(y)] - _6T5(Su(xﬂ y)v
) {dr(2).605()} =0, {dr(2), 7" (y)} = —0,°8" (. y).



Pauli’s principle

Wolfgang Pauli (1936, 1940) suggested the new principles that
1. The total energy of the system must be a positive definite
operator such that the vacuum state is the state of the

lowest energy.

2. Observerbles at two points with space-like separation must
commute with each other.

The quantization of the fields

» with half-integer spin according to case (a) would violate
principle 1, — known as the exclusion principle,

» while with integer spin according to case (b) would violate
principle 2.



Free field quantizations

We have to remember that what we oberve is not nature herself, but
nature exposed to our method of questioning. — Werner Heisenberg.



The Klein-Gordon attempts

Considering the Lagrangian of a scalar field

_ } 12 1 2 } 242
L= 56 =5 (Vo) —5m’
_ 1 2 1 5.5
we obtain the Klein-Gordon equation

2
<§752_v2+m2)¢:0, (3“(9M+m2)¢:0, or (D+m2)¢>:0,

Noting that the conjugate to ¢(x) is (x) = ¢(x), we can
construct the Hamiltonian:

1 1
H= /d3x7-[ = /d3$ [2772 t5 (Vo)* + %m2¢2 .



The Klein-Gordon attempts

In the momentum space representation, the Klein-Gordon field
is expanded as

3 .

so that the Klein-Gordon equation will be
2

2

which is a simple harmonic oscillator (SHO) equation which can
be easily solved by introducing the annihilation and creation
operators such that

[ap, ap/T] = (2m)*0® (p - p').



The Klein-Gordon attempts

We will expand the field ¢ (x) and 7 (x) in terms of the
annihilation and creation operators as

d3p 1

o0 = [ oy

m(x) = / (;il))?) (i) % (ap — a_pT) oiPX

These expansions yield the field commutator relation

b0 = [T
X ([a—pT,ap/] — [ap,ap,T]) Jil(pxtp )

= i6® (x — X/) .




The Klein-Gordon attempts

Then the Hamiltonian will be

d*p i 1 i
H= @ )wp ap ap—|—§[ap,ap]
T | S ——
=0

The total momentum operator is written as
d3p
P = —/d3x7r (x) Vo (x) = / WpapTap.

= The operator a,' creates momenum p and energy
wp = +/|p| + m?2.

= The state ap'aq' - --|0) has momentum p + q + -

= We call these excitations particles.

= We will refer to wp, as E, = +1/|p|* +m?2, since it is the

positive energy of the particle.



The Klein-Gordon attempts

The one-particle state |p) o ap' |0) is normalized with the
Lorentz invariance with a boost p’; = v (p; + SE) and

E' = (E + Bp;), where 8 = v;/cand y = /1 — g%

do’ .
W p-aq = 6 (p'—d) dpz

We define

Ip) = /2Epap" |0) = (pla) = 2E, (27)* 6 (p — q).



Time-evolution of the Klein-Gordon fields
The Heisenberg picture of the fields

p(x) = o(x,t) =g (x)e M

m(z) = m(x,t) =l (x)e !

exhibit the time-evolution by the Heisenberg equation of motion
i%(’) =[O, H]. The time dependences of the annihilation and
creation operators are

H iHt efth _

_ —iEpt HY _ iHt
a, =€ Cap e P, =e ap

—iHt _ _ t iFpt
ap —ape LA

ap e
Omitting the superscript H, a;, — ap, and agT — ap', the fields
are expanded by the operators:
d3p 1 - A
,t — i ( —ip-x + T ip-x
¢ (x,1) / (27r)3 5E, ap€ ap € )

T (x,t) = %(ﬁ(x,t):

;
pUZEp

the explicit description of the particle-wave duality.



The Dirac field

» The Klein-Gordon Lagrangian

= 38— 5 (VP — g

has resolved the relativistic inconsistency of the
Schrédinger equation.

However, the quantization [a,a'] = 1 = electron.
Dirac (1928) suggested another Lagrangian:

L= (i —m) =P (4", —m)v. (b= pia)

The canonical momentum conjugate to ¢ is i1,
and thus the Hamiltonian is

v

v

v

v

H= /d?’an/_J (—iy-V4+m)y = /d?’xdﬁ [—ivo‘y -V + mvo} P

= /d?’m/; [—ic- V+mBly. (=", B=17°)



Dirac matrices
The Dirac matrices follows the algebra

v i v
("7 = A = 20" X Laa = S = 21007
Define

Z 14
7 =" = =P e
There are 5 standard classes of the v-matrices

1 scalar 1

yH vector 4

o = Ly*, 4] tensor 6
AP pseudo-vector 4

P pseudo-scalar 1

16
Explicitly, we have

o (0 1\ , (0 o\ 5 (-10
T \10) T = 0 ) TT Lo 1)



Dirac spinor
Pauli spin matrices are defined by the Dirac algebra
v =iod = {447} =-20".
The Lorentz algebra are then

. 1 ..
S — *E’UkO’k,

the two-dimensional representation of the rotation group.
The boost and rotation generators are

i _ boro i ¢ o 0
= 1B=-5(5 )

- i 1 .. of 0 1 ..
g D[t Ad] — T gk = _ Z_]kEk
o =g ( 0 Jk> 2t =

which transform the four-component field «, a Dirac spinor.



Dirac equation
The action principle yields the Dirac equation
(i"0y — m) () = 0.

This implies the Klein-Gordon equation shown by acting
(—iy"0,, — m) on the left

(=70 = m) ("D = m) ¥ = (4970, +m?) ¢
= <; (77"} 0.0, + m2> W
= (*+m*)y=0.

Since the canonical momentum conjugate to v is ",
the Hermitian conjugate form of the Dirac equation is

—ia;ﬂ/_w“ —ma) =0.



Solutions of the Dirac equation

Since a Dirac field 1) obeys the Klein-Gordon equation, we can
expand it as linear combinations of plane waves:

b(x) =u(p)e T, h(z) =v(p)et .

Plugging them into the Dirac equation, we obtain

(Y*pp —m) u(p) = (p — m) u(p) p>=m? p°>0,
2

=0,
(Y*pu +m)v(p) = (p+m) v(p) =0, P =m? p°>0.

In the rest frame, with o* = (1, 0) and ¢* = (1, —0o), the column
vectors u(p) and v(p) are in the form

ww = (V) vo=( YT ) s-

where £° and n® are the bases of the two-component spinors.



Spin sums
The solutions are normalized accoring to

N

"(p)ut(p) = +2m6", u*t(p)ut(p) = +2Ep0",
"(p)v®(p) = —2md", vt (p)v*(p) = +2Ep0"".

<

The v’s and v’s are orthogonal to each other:

but
uT(p)v® (p) =" (—p)u’ (p) = 0.

Then the completeness relations are
S uwtp)at(p) = v pt+m=+"pi+m=p+m,
S

v ptp) = vp-m=Atp—m=p—m.

S



The quantized Dirac field

The Dirac field operators are expanded by plane waves
_ s s —ip-x sT,.s ipx ) .
1/1(1’) _ / 271' \/ﬁz ( +bp v (p)e ) )
_ s s —ip-x st-s ip-x
1/1(95) _ / 27‘( \/ﬁz (b —|—(Lp U (p)e ) )

where the creation and annihilation operators obey the
anticommutation relations

{awaf;r} - {bg,bfj} — (21)26® (p — q) 6"
The equal-time anticommutation relations for +» and ' are then
{1 00 n ()} = 09 (x = y) dun:
(e (), 00 3} = {wa (), 01 (1)} = 0.



Physical meaning of the Dirac field

The vacuum |0) is defined to be the state such that
ap, |0) = by, |0) = 0.

The Hamiltonian, with dropping the infinities, are written
d3p st s strs
H:/Wng<apap+bp bp)

The momentum operator is
3 t . dgp st s sTps
P= [ dnl(iv)v= [ 55500 (aplap + 55103

Thus both a;T and b;,T create particles with energy +E, and
momentum p. The one-particle states |p, s) = \/Eaij |0) is
defined so that (p,7|q, s) = 2E, (27)° 6©) (p — q) §"* is Lorentz
invariant.




Conservations of the Dirac field
The Dirac field transforms according to
Y(@) = (@) = Ay (A7)
The change in the field at a fixed point is

(AL =i —gwuS* =1- 1033, i.e. infinitesimal rotation angle ¢
about z- axis)

S0 = (@)~ wle) = Ay (A'2) — )
= <1 — ;923> Y (t,x+ 0y, y — Ox,z) — ()

- ¢ <xay + y0y + ;23> Y(x) = A,

The conserved Noether currents are
oL i
;0 = A = —1 < aa: + 23> 1/)7
J FIGYD) b = —igy” -y 5

J = /di”xw <x x (—iV) + ;2> .



Spin-4 Dirac field

At t = 0, for simplicity,

6 V2ER2E,
XZ(TT r’ +br r’T(_p/))
23

xS (apu” (p) + 6,107 (-p))

The commutator rules for o' yields

10 = 5 2 (w0l = 3 (€15 ) il

r

the eigenvalues of J. are +3.
= The Dirac field conveys spin-%.



Conserved quantities of the Dirac field

» A current j*(x) = 1 (z)y"(x) is conserved by the Dirac
equation

8uj# = (@ﬂﬂ) Yap + 1;7“3u¢
= (imy) ¢ + ¢ (—imy) = 0.

» The charge associated with this current is

Q- /dpgz sTs bsTbs)

is conserved: there is a unit charge e.

» An axial vector current j#5(x) = b (x)yHy5(x) is
conserved )
Dug*® = 2imaby .

if m = 0.



Discrete symmetries of the Dirac field

Let C the charge conjugation, P the parity, T' the time reversal
operators. Use the shorthand (—1)* = 1 for u = 0 and
(—-1)* = —1forp=1,2,3.

R e K e e A Yot Oy
P +1 =1 (=)F (=1 (=DH(=1)  (=1)*
T o411 =1 (=)* (=DF (== (=D
C +1 41 1 +1 -1 +1
CPT +1 +1 -1 -1 +1 -1

» The free Dirac Lagrangian £y = ¢ (iy*0, — m) ¢ is
invariant under C, P, and T separately.
» The perturbation §£ must be a Lorentz scalar.

» All Lorentz scalar combinations of ¢ and ¢ are invariant
under the combined symmetry C' PT.



Propagators and causality

The amplitude for a scalar Klein-Gordon particle to propagate
from y to = is (0| p(x)d(y)|0):

? / _ dsp 1 —ip-(z—y
e 010w 0) = Dte ) = [ e,

» When z — y is purely in the time direction, (z — y)* > 0;
20—y =t,x—y=0:

4r > p2 i /2 2
D'(z— = / dp———=e VP tm t
(@=9) 2m)® Jo 24/p? + m?
1 x

= — dE\/ E2 — m2e !

2
am= fon

~ efimt.



Propagators and causality

» When z — y is purely spatial direction, (z — y)* < 0;
20—y =0, x—y=r:

dp 1
D'(z — = /eZp'r
1 /oo g p2 eipr _ e—ipr
(27)® Jo 2Ep 1pr
— [ee] peipr
Ny B /s s
2(2m)°r J - pP+m
—mr
r—00 € ’

= Causality is still violated so we need to a correct form of the
amplitude vanishing for (z — y)? < 0.
= Since ¢(z) is a quantum field, let us consider a commutator

[¢(x), ¢(y)]-



Propagators and causality
» The amplitude for the commutator

(O[p(x), o] 10) = (0] ¢(x)p(y)]0) — (O] ¢(y)e(x)]0)
= D'(zx—y)-D'(y—=x)

dp 1 , ,
_ —ip-(z—y) _ ip(z—y)
/ (27)° 2B <6 ¢ )

preserves causality under the Lorentz transformation by
taking (z —y) — —(z — y) on the second term to cancel
each other.

» The amplitude integral can convey the frequency integral
through the residue theorem:

dpo e~ wo(z°—1°) B dpg e~ Po@’=y°)
2r pP-m? V) o p? - B2
= —2mi (Res|p0:+Ep + Res|p0:_Ep)
1 —iBp (20—y" : 0_,0
- p(2"—y") _ +ibp(z y))
22E (e e :



Propagators and causality
The amplitude for z° > 4 is then

3 0 B '
Olfpt).owIl0) =, [ [ e,

(27T)3 277'('2}72 — m?2

Let us define a function
Dr(x —y) =0 (2" —4°) (0| [6(2), ()] |0) ,
which satisfies the Klein-Gordon Green’s function equation

(0*+m?) Dz —y) = —idW(z—y),
or (fp2 +m2) Dr(p) = —i.
which is known as the retarded Green'’s function, explicitly

d*p i ip(m—
DR(I'—Z/):/WME pi( y).

For 2° < 4°, we have the advanced Green’s function
Da(z —y) =0 (y° — 2°) (0| [(2), 6(y)] 10) = =Dr(z — y).



Propagators and causality
Let us define the Klein-Gordon Feynman propagator as

Dip(z —y) = (O] T {p(x)p(y)}|0)
= Dpr(r —y) + Da(y — z)
0 (t) (0] ¢(z)9(y)0) + 6 (=) (0] @(y) () |0)

(tErF—yO)
- / d*p )
N (2m)* p? — m? + ie

e~ (T=y).

where T {---} is the time-ordering operator, and the integrand
of the last line has the poles p° = + (E,, — ie), for e — 0.
Similiarly, we can also define the Dirac Feynman propagator as

Spe—y) = T {¢(x)d(y)}0)
d*p i(p—!—m)

— / e~ (x=y)
(2m)* p? — m?2 + e




Electromagnetlc mteractlon
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To those who do not know mathematics it is difficult to get
across a real feeling as to the beauty, the deepest beauty, of
nature ...—Richard P. Feynman.



Electromagnetic interaction

» We have understood the spin and dynamics of electron as
a free Dirac field.

» However, a free particle is not measurable so we need
interaction to really observe it.

» An electron is subjected to the electromagnetic interaction
with the Lagrangian such that

Loep = Lbirac + Laxwell + Lint
_ 1 _
= ¢ (la - mO) P+ ZFW’FHV - 60¢7#¢Au7

where A, is the electromagnetic vector potential,
F., = 0,A, — 0,A, is the skew-symmetrical
electromagnetic field tensor, and ey < 0 is the electron
charge.

» Introducing D, = 0,, + ieq A, we have a simpler form

- 1
Lqep = (i) —mg) ¥ — ZFWFW-



Electromagnetic interaction
» The QED Lagrangian is invariant under
the gauge transformations
Y(a) = ¢ Op(z),  Au(e) = Au(e) + duala).
» The equation of motion for 1 is
(i) —mo) ¥(x) = 0,

which is jus the Dirac equation coupled to the
electromagnetic field.
» The equation of motion for A, is

OuF™ = ey = eoj”,
which is the inhomogeneous Maxwell equations, with the
current density j¥ = ¥y¥).
» The quantization of A, fields are depending on the choice

of gauges, such as the Coulomb gauge V - A = 0 or the
Lorentz gauge 9, A" = 0.



Maxwell field
In the relativistic notations, the maxwell field is defined by

Fvo= gAY -9 AY, = (p,])
A

= E=-VA’- - B=VxA
ot

and written as

0 —E' —E? —E3
E! 0 —B® B?
E? B3 0 —B!
E® —-B? B! 0

The four-vector potential A# does not determined uniquely
for a gauge transformation

AP (z) = A¥(z) + 0" a(x),
but it yields the Lorentz invariant Maxwell equation

OA" — 9 (9 - A) = j*.



Radiation field
» We modify the Lagrangian Lyiaxwen 10
1., 1
*CMaxwell = _ZFM F;u/ - 55 (a : A)2
so that the Maxwell’s equation are replace by
04, — (1-€)8, (9 A) =0

and the conjugate momenta 7* to A, are

0L\ axwell 0 0
P _ _ 0 _ op .

where (0 - A) is a scalar field such that 0 (9 - A) = 0.

» For radiation field, we conveniently choose ¢ = 1 (Feynman
gauge) to yield the Maxwell equation

OA* = 0.



Dixitque Deus,

et facta est lux. — Genesis 1:3



Radiation field

The solutions of JA* = 0 are the plane waves:

dBk 1
Auz) = /(27r) \/ﬁ

x§:[ e (k)e= 7 4 oW (k)N (k)et k]|

where ¢ are the bases of polarization vectors, which satisfies

N (N*
en (k)ey” (k) _ A\ ek AN
z)\:g(/\)(k;) E(A)*(k‘) _gﬂl/a € (k) € (k) =g .

Real photons convey only the transverse polarizations
e = (0,e), where k - € = 0. For k || z, the right- and left-handed
polarization vectors are

e = —(0,1,+i,0).

&\H



Photon: quantized radiation field
The equal-time commutation rules for the radiation field are
M), Auy)] = [4u0, 4u(y)] =0,
[A4u0, 4] = igud®(x - ).
We can define the photon Feynman propagator as

iguw (e —y) = (0T [Au(x) A, (y)][0)
_ / d4k‘ —ig/“, e—ik'(.T—y)
(2m)* k% + i€
/d4k |:_iguu 1-¢ —ikﬂkl’ e—ik-(z—y)‘
@2m)* [k2+ie € (K2 +ie)?

(arbitrary £) =

» Feynman gauge: ¢ = 1 and Landau gauge: £ — cc.

» The longitudinal polarization state could be cured by
introduing a fictitious photon mass . — 0.



A generic experiment
» A generic experiment is understood diagramatically

=

|a,in) |b,out)
» The amplitude (b, out|a, in) describes the probability that

|a) will evolve in time and be measured in the |b) state.
» For the incoming state |i, in), the transition probability to a
final state |f, out) is

wiei = |(f,out]i,in)|?.
» There is a unitary operator, STS = SST = 1, S-matrix:
(f,outli,in) = (f,in| S|i,in) = (f, out[S|i,out),

where S =1 +ir and St = 1 — ir, where the T-matrix
contains the information on the interactions.

» The 7-matrix is consist of the energy-momentum
conservation and the invariant matrix element M:

(flirli) = (2m)* 6@ (P = Pp) - iM (i — f).



Total decay rate
Consider a reaction of decay

a—14+2+---4+ns (eg., Neyp, = Negs +7).
The transition probability per unit time is

2
1S5l
Wfeq = T

In a cubic box of volume V = L? with infinitely high potential
well, the differential transition probability is

1 d3p
- s@Wy, 2 H @by
e (2m)* ™ 42E (s = Pa) My

The lifetime 7, (= I', ') is the inverse of the total decay width

Fa = ;Fa%{n‘f}:;w{nf}&a

1 1 dpy dPpn,
= S (pr —pi) IM gl
o (%)3%4/ 2B, 2B, (P = pi) [Myil




Differential cross section
Consider a scattering process

a+b—14+2+---4+ny (eg., Ness, +v — Neap, +27).

The transition rate (transition probability per unit time) density
to one definite final state is

Wi = lim “’{/H’ = (2m)* 8 (P — Py) My

V—oo

The differential cross sectin (in Lab.) is defined as the transition
rate density per target density (n;) per incident flux (')

W g ﬁ dgpf/

e F et (2m)? 2w,

The target density n; = 2w, and the flux F' = 2w, v, yield

dgfi =

2wp1 2wp2 Urel 27T)3 2wpf/

doy; = (2m)* 6W (P, — Pp) My

=i



Interaction picture
» Let |©2) be the ground state of the interacting theory.
> Let Hin(t) = [ d3aHing = — [ d>xLine be the interacting
Hamiltonian and H = Hy + AHiys With 0 < A < 1.
» Let ¢(x) = e't¢ (x) e~ be an Heisenberg picture field
and for t # tg, ¢ (t,x) = (1) ¢ (1, x) e~ (t=t0),
» For A\ = 0, H becomes H, and we can define an interaction
picture field as
b (t, %) o = e oE00) g (15, x) e~ Ho(Et0) = 1 (1, x) .
» The full Heisenberg picture field ¢ in terms of ¢;:
o (t,x) = et (t=to) {eiHo(t—t())¢I (t,x) e—iHo(t—to)} e—tH (t=to)
= U (t,t0) é1 (t,x) U (t, o),
where we have defined the unitary operator

U (t,tg) = oiHo(t—to) ,~iH (t—to)



Unitary time-evolution operator
» The initial condition is U (t, o) = 1.
» The Schrédinger equation:

i%U(t,to) = MoU=10) (H — Hy) e~ H{I=t0)

e’iHo(tfto) (Hint) e*itH(tfto)

e’iHo(tfto) (Hint) e*’L’tHO(t*tQ) 6itH0(t7t0)67itH(t7t0)

= Hi(®)U (t,to)-
» We expand U ~ exp (—iH t) as a power series in \:
t
U(t,to) = 1+ (—l)/ dt1Hj (751)

) ’ t .
(—;) /to dty /to dtoT [Hy (t1) Hy (t2)] + - -

T {exp [—i tdt’HI (t’)} } .

to

_l’_




Interacting ground state

» The interacting ground state |Q2) is not |0); (€2|0) # 0.
Ey = (Q| H |Q2) with the zero of energy Hy |0) = 0.

v

» When H |n) = E, |n),
N0y = 3 e T ) (nf0)
= EFTI0)(Q]0) + > e T n) (n|0).
n#0
—0
» Since E,, > Ey foralln # 0,as we send T' — oo (1 — i¢)
Q) — 1; —iEoT ()0)) ! e~ iHT 0) .
9) =, lim (7T (010) 7 e o)
» Since T is very large, we can shift it T — +ty:
-1
— . —iEo(t0+T) -
|Q> Tﬁiér(rll—ie) (6 <Q|0>) U (tD’ T) |0>
-1
— : —iEo(T—to)
@ =l (0]U(Tt0) (e 0l)) .



Two-point correlation in the interacting system
The normalization of the interacting ground state is
. -1
1= (010) = (|(0[Q) =P ED) (0] (T, t0) U (to, T)[0).

Now we have the two-point correlation function:

QT {6()6()}2)
O {e@an) e [ [ diHi)] }10)

roeli=ia (0|7 {exp |~i [Tt ()] }10)
We need to evaluate the expressions of the form

(01T {61 (21) ér (2) -~ b1 () }|0).
Note that (0|7 {¢;(z)¢7(y)}|0) is just the Feynman propagtor.



Normal ordering

[From now on we drop the subscript 7

We decompose ¢(z) into the positive- and negative-frequency

parts:

$(z) = ¢" () + ¢~ (2),

d3p 1

0= G

d3p 1

e ¢_(x):/(27r)3 oF,

These decomposed fields satisfy
¢*(2)]0) =0 and (0]¢™(z) =0.

A normal ordring operator N is defined as

N (apakT> = akTap = N{¢+(x)¢7(y)} = qS*(y)gzﬁ(a:)

So we, with [akT,ap]i

(O] N {p(x)¢(y)}10)
T {o(x)p(y)}

= ax'ap + apay’, have identities

0
1

N {o(2)9(y)} + d(a)o(y)-




Contractions and propagators
The contraction ab is defined by the commutators:
» The contraction for the Klein-Gordan fields is defined by

o _ [ ot (@), 6" (y)], fora® >y
p(x)ply) = { [¢+(y),¢>_(i)], for yo >io'

~ A 1
O (p(x)p(w))10) = (OIN ($()¢(y))|0) + (0] ¢(x)(y) 0)

d(x)p(y) = Dr(z—y)=--—--
—
AM(z)AY (z) = Ap*(xz—vy) :M
» The contraction for the Dirac field is defined by
oy [T, v (y)}, for xo > yo;
vl = { (@), fory >

O Wdw)10 = OIF Wo)dw) o)+ OB 0
¢($)¢(y) = SF(x—y):_>_



Wick’s theorem and connected diagrams

» For n field operators, we have an identity

Tlp(x1)d(x2) ¢ (wn)] = Nlp(x1)(x2) ¢ ()]

+ {all possible contractions} .

which is knwon as Wick’s theorem.
» The two-point correlation has the structure

) Numerator
QT Q) = S
QT {p(x)d(y)}2) Denominator
N o — ( ) )
umerator Y + -/ y+ connected

x x
xexp( +®+...>
Denominator = exp (O+CD+ . ) 7

@7 (oo = (— + —O

) |
Y connected



S-matrix
S-matrix is simply the time-evolution operator, exp (—iHt):

(f,out|S|i,out) (f,out|e ) | out) .

= lim
T—o00
To compute this quantity we consider the external states (|(2)):

li,out) o« lim e T, 0).
T—o00(1—1€)

The S-matrix will be of the form

i 0l e—iH2T) |;
poim (f,0e /i, 0)

x  lim <f,0|T<exp [—i/idtﬂ,(t)Du,m

T—oo(1—1€) _
Then the 7-matrix (cf., S = 1 + it) elements becomes
(f,out|it|i,out) = (2m)* 6W (P, — Py) - iM (i — f)
T
= lim <<f,OT <exp [—z/ dtHI(t)}) \i,0>> .
T—)OO(l—iE) -T connected

amputated



Coulomb interaction

The M matrix element of the Coulomb interaction in the
leading order is

p1’ P2’
. —1iegy! —iegy”
iM = k
b1 p2
_ . _Zg vV _ .
= u(p1) (—ieoy") u (p1) kQM u (p2') (—ieoy”) u (p2)

_Zg;w
k2

= (—ieo)’ @ (p1') v"u (p1) u (p2') v u (p2) -

This is known as the first part of the Mgller scattering.



Bhabha scattering

The Bhabha scattering is a deformed Mgller scattering:
p1’ P2’

iM = h

P D2

—1 v . v\ —
Do (o) (—ieor) B (p2)

_iguu
k2

= u(p') (—ieoy") u (p1)

= (—ieo)* @ (p1) ¥"u (p1) v (p2') 7T (p2) -
» The electrons-2 travels in reverse-time order 7.

» The CPT symmetry — (CP) ™.

» The negative-energy electron is known as positron.



Compton scattering

The Compton scattering contains two diagrams,

/

P % p %
7]
p—K
iM = p+k n o v
v
k p k p
i (p+ K+ mo)

= o) e (V) (mien”) Ty 5 (Hieor ) e (B u )
i(p—F+mo)

e () Cien " ()

+u (p’) (—iegy”) ey (k)



Compton scattering
The numerators and denominators can be simplified as follows:

» Since p? = mo? and k? = 0, the denominators are
(p+k)?—mo? = 2p-k in iM
(p — k’)2 —mo? = —2p-k in iMo.
» For numerators, we use a bit of Dirac algebra:
(p +mo) Y'ulp) = (20" —~"p+~"mo) u(p)
= 2p"u(p) =" (p —mo) u(p)
= 2p’u(p),
We obtain
iM = ieg’e,” (K) e, (k)

_ YR 4 29HpY AR R 29 pY
x1 (p') 5k o W u(p).




Renormalization

The laws of nature are constructed in such a way as to make the
universe as interesting as possible. — Freeman Dyson.



Soft Bremsstrahlung

Bremsstrahlung = Bremsen (to break) + Strahlung (radiation).

+Ze +Ze

For the soft photon radiation, |k| < |p’ — p|,
MO (p,)p - k) ~ MO (p, + kap) ~ MO (plvp)

iM = —iegu (p) [Mo (P, p)] u(p) [60 <Z/l./; -7 2)]




Soft Bremsstrahlung
The differential cross section is then

da(p—)p'—l—’y) = da(p—)p’)

X/ ek 1 o2
. 0
(2m)” 2k A=1,2

The differential probability becomes
. / p
vk pk

The total probability, for soft photons 0 < k£ < |q| = |p’ — p|, and
the differential cross section with fictitious photon mass p, are

RCT ey
vk pk

Bk 2
dP (p—p' + (k) = 32

lal q —¢?
P R~ / dk— I(Vv)wlog( ) — 00,
0 k p?

2 2
Qo —4q —4q
do (p —p + 7) oS — log <M2> log <2) .



Radiative corrections

There are three classes of the radiative corrections;
Vertex corrections, Self-energies, and Polarizations.



Vertex corrections

M =

iM(2m)d (p’o —po) = —ieg (u(p) T (¢, p) u(p)) - A5 (V' — ).

To lowest order, T'* = ~*#.
We may express I'* in a symmetrical form:

I =~1A+ (p* +p*) B+ (p™" —p*) C.



Vertex corrections
Using the Gordon identity

pt+pt L e

u (p") v ulp) = a (p) S 2o

u(p),

we have

J“qu

T (p',p) = v"F (¢°) + B (q%),

2m0

where the unknown functions £ and F5 are called form factors.
To lowest order, 4 = 1 and F; = 0.

» When A% (z) = ((27) 6 (¢°) ¢ (q) ,0),
iM = —iegu (p) T° (¢, p) u(p) - ¢ (q)
S 0B (0)6 (@) - 2mog’'
Vx) = eF1(0)¢(x).



Vertex corrections
» When A;l(a:) = (0,A% (x)),

w

. . _ i 10" qy Ai
iM = +ieg [u (p,) <’>’ Fy + 2mz F2> u(p)} Ay (a)-
Again the expression in brackets vanishes at g = 0, so in
this limit
-1 -

iM = —i(2mo) - cot’! (Ma’f [F1(0) + F2(0)]> ¢B (a),
where B* (q) = —ie'/*q' A, (q). This is just that of a
magnetic moment interaction V (x) = — (u) - B (x), where

£,

k4

() = = [F(0)+F(0]¢'2
mo

€0
= g(-—2)s
o= (5 )s,

where the Landé g-factor is
g =2[F1(0) + F5(0)] = 2 + 2F>(0).



Vertex corrections
To one-loop order, the vertex function T'* = ~# 4 §T#:

where

u (p') 6T (p', p) u(p)

Dicy? / d'k a (@) [Fy"F +mo*y* —2my (k + k)] u(p)
(@m)" (k= p)? +ie) (W2 = mo? + i€) (2 — mo? + i)



Vertex corrections
The Feynman parameterization

1 /1dx 1
AB  Jo T [zA+(1-x)B}?

1
1
= dedyd(z+y—1) ——
/0 ( ) [xA + yB]2
simplifies the denominator D to
D = I?—A+ie
I = k+yq—zp,
A = —zy+ (1 —2)2me? > 0.

The numerator will be

Y (=324 (L= 2)(1—y)g® + (1 — 22 — 22) mg?)
N =au(p) + (p™" +p*) - moz(z — 1) | u(p).
+¢" - mp(z — 2)(z —y)



Vertex corrections

Using the Gordon identity again, we have an entire expression
u (p') oT (¢, p) u(p) =
2
2iey? / / dedydzd (x +y+2—-1) =

D3
x (p') {’Y“ : <—212 +(1—2)1-y)®+ (1 - 42 +27%) m02>

it q,

(2m022(1 - z))} u(p).

2m0
There are two classes of integrations:

d4l 1 d*l 12
/(27’(‘)4 (l2 — A)n and /(27‘_)4 (l2 — A)n

-
convergent divergent for n<3




Pauli-Villars regularizatoin

We introduce ad hoc a cut-off A(— oo) in the photon
propagators:

1 1 1
(k2 —p?) tie ~ (K2—p) tie  (k2—p%) — A2 +ic

so the denominator is altered as
A — Ay = —zyg® + (1 — 2)*mo? + zA%

Then the divergent integral is replaced by convergent ones:

/ (26124 <(z2 iQA)?‘ NG —ZQAA)?’) N (4;)2 o (AAA> ’

which looks like (0o — cop) o log (Ap/A).

» How can this result affect on F} (¢%) and F» (¢*) with
Fi(0) =1?




The convergent form factor F3

The form factor F; is corrected to order ag(= eg?/4mhc)

2mo2z(1 — 2)
mo? (1— 2)° — ¢Pay

aQ
2

B (%) = / dedydzd(z +y+ 2 —1) [

is convergent especially for ¢> = 0, such that

2mo?z (1 —
R@-0 - 2 dxdydzamwnm
1o

1 1—2z
= ag/ dz/ dy SE—
™ Jo 0 1—=2 2

We get a correction to the g-factor of the electron:

9—2 o
= ~ 0.0011614.
e = 2 271' (ao=cv)

Experiments give a.“® = 0.0011597, which differs by ~ 0.15 %.



Infrared divergence
The divergent form factor Fy (¢?) is corrected to

1
a
Fl(q2) = 1—}—27?_/0 drdydzd (x +y+ 2z — 1)

2 2
mo° (1 — 2z
log 5 ( 3 )2
mo? (1 — 2)” — ¢*zy

mo? (1 —4z42%) + ¢ (1 —2)(1—y)

X

mo? (1 - 2)° - ¢?zy + 2z
B mo? (1 — 4z + 22)
mo2 (1 — 2) + 2z

where p is the fictitious photon mass.
In the limit  — 0, we may obtain

2 2
2 g —q —q



What did we have made mistake?
» The S-matrix theory

connected
amputated

(@176 (20) 6 a2)--- 12 = 3

is based on the completeness of the normalized interacting
ground state |Q2):
1=12) (]

from the free vacuum |0).
> Let H ‘)\0) = Ao |)\0>, but P ‘)\0) = 0.

» Let |\,) be the boosts of |\g) with E,(\) = 1/|p|* + m2.

» The desired completeness relation will be

d3p 1
L1 @0+ 3 [ B el Dl

» Accordingly we need to normalize |2) again:
= Renormalization.




The particle dispersion

H
multiparticle
continuum
bond 1-particle
ound state in motion
m .
1-particle at rest
P

The eigenvalues of P* = (H, P) of particle mass m.



Renormalization

Assume ¥ > 5 and drop off (Q|é(z) Q) (2| (y) |2) (= 0).
The two-point correlation function is

1) = 3 [ s O (el 1)

The matrix element

(Qlé@)[Ap) = (T H(0)e™ " Ap)
= (Q16(0) Ap) 7P|
= (Q16(0) o) e o -

The two-point correlation function becomes for 20 > 3°

CLEEUIEDY / P9 (] 6(0) M)

42 —my2 +ie




Kéllén-Lehmann representation
For both cases of z° > y° and 3° > 2%, we have
fe'e) dM2

@To()o) 9 = [~ G Ep (%) D (o = i 21%).

where p (M?) is a positive spectral density,

p(M?) =" (2m) 8 (M? — ma?) [(Q] $(0) [Ao)[* -
A
p (M?)

states

2-particle
states

m? (2m)? M2



Field-strength renormalization
The spectral density is

p (M?) =2r6 (M? —m?) Z + (nothing else for M? < (2m)2) ;

where 7 is refered as field-strength renormalization.
The Fourier transform of the two-point correlation becomes

[ateers @to@omio) = [T OC, ()
0o 27 p? — M? + ie

iZ < dM? i
p2—m2+ie+/v(2m)2 27 A )p2—M2+ie

L»*

m? (2m)2

isolated poles from branch cut
pole bound
states




The electron self-energy

» The electron two-point correlation function is

QTP()h(y)|Q) = —— + — m

x Y x Yy
T Yy
» The free-field propagator:
P 7 (p + mo)

 p2 —m? +ie’

» The lowest order electron self-energy:
p—k

SR i) i)

P2 — mg2 P2 — mg?2



The electron self-energy

We have the explicit form of the electron self-energy:

4 ; —q
—i¥s (p) = (—i60)2/ (d - ola Lk +mo)

om)? " k% —mo? + ie " (p— k) — p2 +ie

where we regulate it by adding a small photon mass .
We use the Feynman parametrization and shift the momentum
l=Fk— zptoget

4 2xp+4
—iX9 (p) = —eg / da:/ dl LEP o 35
— A +ie)?

where A = —z(1 — 2)p? + zp?® + (1 — :L’)mOQ.
We regulate it by the Pauli-Villars procedure:

1 1 1

— .
(p—k)? —p2+ic (p—k)¥P—p2+ie (p—k)*—A2+ie




The electron self-energy

Introducing Ay = —2(1 — 2)p? + 2A%(1 — 2)me® — xA?,

A—oo
we have

o rA?
X2 (p) = 272 / d (2mo — ) log ((1 —x)mo® + xp® —z(1 - fC)P2> '

The logarithm of = has a branch cut begining at the point where

(1—2)mo’+ap? —z(1—xz) =0,

or

2

1 me®> 1 9
=5t 5 aetgay (- ) (22 = (mo = ).
z=3 + AT AT p? — (mo + p) — (mo — )

The branch cut of 2 (p?) begins at p* = (mg + p)?,
two-particle threshold.

» Where is the simple pole at p? = m??



The electron self-energy

The two-point correlation function is written as

~ - =G~ Q~ O

2
< ) e )
- m
Hence (p—mo—3(p)) ]M =0

gives us the simple pole at the physical mass, m = mg + X (p)



Mass renormalization

In the vicinity of the pole, p — mo — X (p) has the form

(pm)(ldz(p) )+(’)<(pm)2>

dp
When we write the two-point correlation function as

p=m

iZy (p+m)
7

i

/ d e (Q Ty (a)h(0) | Q) =

—m?2 +ie
we obtain the mass renormalization constant to be

42 (p)
Zyt=1- i

p=m



Mass renormalization
To order «g, the mass shift is

6m:m—m0:22(p:m)%Eg(p:mo).

Then the mass shift is

A2
om = mo/ dx ( 1—:E)log< :B ),
(1 —2)° mo? + ap?

which is ultraviolet divergent O (log A?) for A — oo.
The correction for Z5 in order «y is calculated to be

b))
5z, = 42
dp p=m
1 A2
- X dx | —xlog f
21 Jo (1—2)"m?+ zp?

z (1 —z)m?

+2(2 -2z
( )(1—3:)2m2+xu2

9§ The small correction to mass my is infinite!



Mass renormalizaiton

One can show that the exact vertex should be read

w0 qy

2m

ZT" (0,p) =" Fi (%) + B (q).
The left-hand side of the exact vertex function becomes
ZoTH = (14 6Zy) (Y* + 6TH) = A* 4 6TH 4+ 416 2y,
while in the right-hand side F; (¢?) becomes
Fi(¢*) =14 6F (¢*) +0Zy = 1+ [6F1 (¢*) — 6F1 (0)]

if 622 = —0F1(0).
Define another rescaling factor Z; by the relation

r (q = O) = Zl_l’Y”,

where T'* is the complete amputated vertex function.



Mass renormalization

However, the divergent part of the vertex correction is

1
SF1(0) = (2)[7?/0 dredydz6 (x +y+2—1)
ZA? (1 — 4z 4+ 22) m?
X |log 5 + 5
(1—2)"m2+ zu? (1 —2)"m2+ zu?
1
Qg
= — [ dz(1-
o /. z(1-2)

22 (1 — 4z + 22) m?
X |log 5 + 5
(1—2)"m2+ zu? (1 —2)"m2+ zu?
We can show that 6 F(0) + 675 = 0.
To find F31(0) = 1, we must provide the identity Z; = Z»,
so that the vertex rescaling exactly compensates the electron

field-strength renormalization.
9 The understanding of mass is postponed.




Vacuum polarization
Photon is dressed in order eg?

k+gq
) v M v
il (q) = TQT
k

d*k i i
= (=1)(—i 2/ tr |y : :
(=1) (=ieo) (271_)41“[7 %*mry kF+¢—m
Generally the polarized photon propagator is defined by

ey q q
AT (q) ;\/\@'\/\M

As for the electron self-energy the polarization decomposes



Ward-Takahashi identity

The guage invariance of radiation field leads the charge
conservation (g, M*"(q) = 0) in such a way that

This identity is known as the Ward-Takahashi identity:
—ig, " (p+¢,p) =S (p+q) =S (p).

We defined Z; and Z; by the relations

175

" (p+q,p) = Z1 4" as ¢ — 0 and S(p) ~ p—m

Setting p near mass shell and expanding the Ward-Takahashi
identity about ¢ = 0, we find

—iZl_lg = —iZQ_lg = Z1 = Zs.



Charge renormalization

» The Ward-Takahashi identity tells us that ¢, 11" = 0.
» In other words, TT*" « (g“” — q“q”/qQ).
» Furthermore, we can expect I1*(q) will not have a pole at

¢ =0.
» |t is convenient to write
" (q) = (¢°g" — ") (%)
where II (¢?) is regular at ¢ = 0.

The exact photon two-point correlation function is

/:\/\@'\/\;} _ —Zg2,ul/ + —Zg2,uz/ [Z (q29pa _ qpqa) I (Q)] _’;QQUV +...

q q
_ TG | —iGup 2 —Gup o2 (2
= 2 + 2 AL (¢°) + 2 APATTI? (¢7) + - -

where AL =60 — ¢°q,/q* and ALAT = A,



Charge renormalization

» We can simplify further

—1 me —1
MDD, = EaoT ) (9’” - M?) e

q q

qudv
q2
_ _igMV .. Iz _
= —F=—— (. qM"(q)=0).
Za-t) " eMO=9
» As long as II (¢?) is regular at ¢*> = 0, the exact propagator
alway has a pole at ¢> = 0.

» In other words, the photon remains absolutely massless at
all orders in the perturbation theory.

» The residue of the ¢> = 0 pole is

1

Ii:iTaB—EEZ%.



Charge renormalization

» Since the scattering amplitude will be shifted by

6029,11,1/ Z3602.q;w
q q
we will have the charge renormalization

€ = deo.

» Considering a scattering process with nonzero ¢ in
leading order «y,

% (=vm) ~ o (Cme—mon)

» The quantity in (---) has an interpretation of a
¢>-dependent electric charge, so we have

ag — a(¢?) = S 5
0 q T 1-T(?) " 1- [y (¢3) — 1 (0)]




The divergent polarization 11,
In order ey?, the polarization is badly ultraviolet divergent:

. : d*k i m) i(k+d+m
)=~ [ e |
:_462/ d'k k' (k+q)" + k" (k+ ¢)" — g™ (k- (k+ q) — m?)
° (2m)? (k2 — m2) <(k e m2> '

Introducing a Feynman parameter, we combine the
denominator as

1 ! 1
= dx ,
(k2 —m2) ((k+Q)2 fm2) /0 (2 +a(1-x)g> —m?)?

where | = k + zq. In terms of [, the numerator will be

Numerator = 2*1” — g% — 2z (1 — z) ¢"q”

++9" (m2 +z(1—2) q2) + (terms linear in ) .



Wick rotation

» The momentum (contour) integral in the Minkowski metric

space-time, g"* = (41, —1,—1, —1), is difficult.

» So Wick suggested a rotation of the time coordinate
t — —iz?, i.e., the Euclidean four-vector product:

/112 + A + e

2= — x5 = (2% =[x’ = — |zp].
L° 110
—+/ 112 + A + e
= °
[ ] . [ ]
+1/112 + A —ie ch_k /112 + A — e
rotation



Dimensional regularization

» For sufficiently small dimension d, any loop-momentum
integral will converge.

» Therefore the Ward identity can be proved.

» The final expression for 11, should have well-defined limit
asd— 4.

» A typical d-dimensional Euclidean space integral reads

dp 1 Qg [ g%t
2 2 = d’ dlg 2
(2m)° (15% + A) 2m)* Jo (1% + A)
where the area of a unit sphere in d dimensions is
identified as 4
[0, (/)

T (3)
and the second factor of the integral becomes

R T




Dimensional regularization
» Near d = 4, define e = 4 — d, and use the approximation

(o-d)r()-2rvo

where v = 0.5772 is the Euler-Mascheroni constant.

» The integral is then

1

/&@ 1
(27) (1% + A) =0 (4m)”

» In d dimensions, g, g"" = d.
» Thus, [#I¥ of the numerators in the integrands should be

replaced by %1%g"".

(2—logA 7+ log (4m) + O (e )>

» The Dirac matrices in d = 4 — € should be modified to

-(2-¢7"

Y Y
YA Py
YA AP Y

44"°

— eny,yP

=27979PyY + ey P



Evaluation of 11,
The unpleasant terms with /2 in the numerator gives

[ Gt (o 8 (1)

Evaluating remaining terms and using A = m? —z (1 — x) ¢ are

d" (q) = (g™ — ¢"¢”) - illz (%),

where
8ep? [* r2-49)
2 _ 0 2
11, (q ) = —WA d:m:(l—x)w
! 2
e 2%.:0 dzx (1 — x) (e —log A — v +log (47r)> .
€ 0

This satisfies the Ward identity,
but it is still logarithmically divergent.



The electron charge shift
» In order «y the electric charge shift is computed as

62—602
——— =023 —> 115(0) = —
" 3 — 2(0)

2040
— -
3me e—0

» The bare charge is infinitely larger than the observed
charge.

» This bare charge is not observable.
» What can be observed is

2\ @0 0
a(q’) = 1 -2 (¢?) —T2(0)] 1 —TIy(¢2)’

where the difference

~ 20[0

2 ' m2

which is independent of ¢ in the limit e — 0.



Classical picture
In nonrelativistic limit, the attractive Coulomb potential reads

_ d’q RN —e?
V(X)_/(2W)3 ) s (1—ﬂz (—Iq\2>)'

Expanding II, for |¢%| < m?, we obtain

«Q 402
V) = et ®

i€2 1 oo QeiQr .
= — (= dQ—=— (1+11, (-Q?)).
o (7) [ agiea (1 (@)
When r~! > m(= \¢), we can approximate the potential as

a a emer
Vir)= — (1_‘_4\/77((»””’)3/2_'_”')

— vacuum polarizations—virtual dipoles screening.




Short-distance limit

For small distance or —¢? > m?, we have

; 20

I, (¢%) 1 dzx (1 —x)

0

«[roe (5 2)+1og< (1_x>>+o(’;f>]
- () o)

The effective coupling constant in this limit is therefore

%

(0%

Oleff (q2) = a log( 2)

Am?2

, A=-exp(5/3).

The effective electric charge becomes much larger at small
distances, as we penetrate the screening cloud of virtual
electron-positron pairs.



Renormalized quantum electrodynamics
The original QED Lagrangian is

L= (0~ mo) ¥ — {FuF™ — oAy,

The renormalization scheme modifies the electron and photon
propagators as

149
Y “ 80

q

To absorb Z, and Z; into £, we substitute ¢ — Z»'/%¢ and
AM — 7312 Ar. The Lagrangian becomes

_ 1 . _
L= 2o (it = mo) ¥ —  ZsFu P — eo Zp 25 2"y Ay,
with the physical electric charge

60Z2231/2 = eZl.



Renormallzatlon Group and Higgs mechanlsm

It seems that scientists are often attracted to beautiful theories in the
way that insects are attracted to flowers. — Steven Weinberg.



Cutoff problem

» Our coupling constant (fine-structure constant) is not a
constant, but it is running as

a (%) o< (log (~¢%)) -

as ¢ — oo, the ultraviolet divergence.

» The divergences are removed by the physical
parameter-fitting (m and e) from the experiments.

» The ad hoc Pauli-Villars cutoff A, for example, has been
introduced for eliminating very large momentum
contributions from the theory.

» In other words, the small distance scale physics are
eliminated and replaced by those parameters.

» However, we do not have any precise information for short
distance physics.



Renormalization group flows

» For a scaling parameter b < 1, but b ~ 1, we rescale
distances and momenta in accoring to

kK =k/b, 2 = b,

so that the variable %’ is integrated over |k/| < A.
» The field is also rescaled as

¢ = [bz—d (1+ AZ)} Y2,

» Our model system with an effective Lagrangian
d d/1 rn2 122 L.,
d.ﬁUﬁeff: dz 5(8#¢) —|—§m¢) +EA¢
will yield the rescaled parameters
m” = (m?+Am)*(1+A2)7 02 — m*,
N o= A+AN(1+A2)72p — 2"



Renormalization scale

We introduce an arbitrary momentum scale M (renormalization
scale) and impose the renormalization condition at a spacelike
momentum p with p? = —M?. Then we may have

(2 b (p) do (—p) ) = pf at p? = M2,

The n-point Green’s function is defined by

G(n) (ZEl, t ,ZL‘n) = <Q|T¢ (:El) T ¢ (ZEn) |Q>connected :

If we shift M by 0 M, then correspondingly we obtain

M — M+46M,

A = AF0A

¢ — (1+dn) 9,
G (1+nén) G,



The Callan-Symanzik equation
If we think of G(™ as a function of M and )\, we can write as

aGm) oG ™)
(n) _
dG BN oM + N

It is convenient to introduce dimensionless parameters

S\ = nonG™.

M M
p= 57M5)\’ V= —W(S??a

so to arrive at the equation

0 0
(n) .« .. M pr—
[M8M+,88)\+nv] G (x4, T ML) = 0.

Since G is renormalized, § and ~ cannot depend on A, these
functions cannot depend on M. We concluded that

[Ma‘L FBO) 2ty <A>} G ({a} s M, A) = 0,

This is known as the Callan-Symanzik equation.



Solutions of the Callan-Symanzik equations
The generic form of the two-point Green’s function is

G(Q)(p) = ——+ loops +—¢—+---
i A? : i i

The M dependence comes entirely from the counterterm §.

By neglecting the 5 term, we find

1 0
=_-_M—905.
Y B VA
Because the counterterm must be
2

A .
6z = Alog 2 + finite,

to lowest order we have
v =A.



Solutions of the Callan-Symanzik equations

In a similar manner we obtain

BN = 634( ox+ AZ&)

Since
2

A
0y = —Blog — e + finite,

to lowest order we have

B(A) =-2B-A\> A,

So 5 and v are not depending on the renormalization scale M.



The QED solutions

There is a v term for each field and a 3 term for each coupling.

Mi+5( ) 0

oM 50tz (e) +mas ()| G ({wi}s Me) =0,

where n and m are, respectively, the number of electron and
photon fieldsin G(™™) and ~, and ~3 are the rescaling functions
of the electron and photon fields.

» (3  the shift in the coupling constant and

» ~  the shift in the field renormalization,

when the renormalization scale M is increased.
Using the methods described before we obtain, to lowest order,

el e? e?

/6(6) = W? 72(6) = 167 Ta2 73( ) W



Running coupling in QED
If M ~ O(m), then the renormalized value e, is close to e. For
the static potential V' (x), we have the Callan-Symanzik
equation

0 0
[MW+B(QT) aer:| V(q;M76T> =0.

Since the dimension of the Fourier transformed potential V'(q)
is (mass) 2, we trade M and g:

0 0
|:qaq_/8(e7‘)aer+2:| V(q;M,eT) =0.

The potential will be in the form
1
Vig,er) = ?V (e(ger)),
where € (q) is the solution of the renormalization group equation

d e(qg;er) =p(e e j€r) = €.
me(q, r) 5()7 (M, r) r



Running coupling in QED
Since the potential, in leading order, is

62

V(q) ~ PoR

Q

we can identify V (e) = &* + O (&*). We immediately obtain

e (Q§ er)

¢
By solving the renormalization group equation for ¢ and using
B(e) = e3/127%, we find

1272 (1 1 1 q
— | = - =) =log—.
2 \g2 & &M

Vv (qa 67') =

This simplifies to

9 Er

) = T2 6n ) Tog (/3D




Running coupling in QED

2

By setting M? = exp (5/3) m? and e, ~ e, with o = £, we
reproduce

_ (0%

al(q) = , A=exp(5/3).

1= (3) log (—4)

There is a renormalization scale M, which replaces the ad hoc
Pauli-Villars cutoff A.

* The electric charge is the result of the virtual vacuum polarization
by the existence of interacting electron.




Evolution of mass
If £y is the massless Lagrangian renormalized at the scale M,
the new massive Lagrangian will be in the form

1
L= ﬁM — §m2¢M2.

We treat mass term by replacing m? — p,,M? and expanding
the Lagrangian about the free field one £, reads:

1 1 _
L=Ly— §,OmM2¢M2 — Z)\M4 Lot

which is the Landau-Ginzburg theory for ferromagnetism!
The Callan-Symanzik equation will give us

3)\2
B=—A—-d)A+ 67
and for the condition 5 =0
A = 1672 By,



Mass from a phase transition
The corresponding renormalization group equation would be

d
dlogp

pm = [=2+ 702 (N)] -

The solution is, for the coupling A = .,
M 2—’Y¢2 ()\*)
Pm = Pm <p> .

The solution gives a nontrivial relation

14

§~pm 7,
where the exponent v is given formally by the expression
_ 1
BEEETICS)
explicitly, the Wilson-Fisher relation in statistical physics

1

l—9_Z(4—-4d.
v g4-)

14



p-decay
» The radioactivity discovered by Becquerel is 3-decay.
» This is the neutron decay process: n - p+ v +e,

p-udu 7

n-udd

» (-decay violates the C' P gauge symmetry.

» A non-Abelian gauge theory, SU(2) x U(1), is required.

» No massive bosons and fermions are allowed to satisfy the
SU(2) x U(1) gauge symmetry.



Massless Dirac field
Let a Dirac field ) is massless, but it is a doublet of Dirac fields

_( vr )
V= < (I
The kinetic energy term may be written as

L =1z - 0, + Yrlio - Og.

The left-handed fields may coupled to a non-Abelian gauge
field A*,,, which defines the corresponding field tensor as

Faw/ _ aﬂAaV _ 81/Aau + gfabcAb#Acy,

through the minimal substitution D, = 9,, — igA*,t*, to yield
_ 1—~°
L = dint (au —igA® 1%, < 27 >> .

Here t* follows the commutation relation [¢7, t] = i febete.




Higgs coupling
» We may assign the left-handed components of quarks and
leptons to doublets of an SU(2) gauge symmetry like

- () n=(").

» Since these fields are massless, we introduce a U(1)
gauge symmetric field ¢, which is known as Higgs field,

Dud) = (au - igAauTa) 0,

where ¢ = 2.
» If the vacuum expectation value of ¢ has broken symmetry

<¢>=¢1§<2>,

then the gauge boson masses arise from

1 a 0 a
|Du¢|2:§92(0 v)T Tb<v >A HAW—J—---



Higgs mechanism

After a symmetrization we find the mass term

2,2

g-v
AL =

8

ap
LA

‘Q
<

All three gauge bosons receive the mass my =
When Higgs field transforms under ¢ follows SU
gauge symmtry,

l\?

2) < U(1)

(ZS N eiaaﬂ'“ eiﬁ/2¢7

two bosons acquire masses and one boson remains massless:



Higgs mechanism

Similarly, the electron fields ¢;, and ey follows the mass term

1
AL, = ——=Mveérer + he. +---
e \/§ eVCLER
by which the massless electron acquires mass m. = %)\ev.

* The electron mass is the result of the spontaneous continuous
symmetry breaking of Higgs field.




Summary

» Relativistic quantum field theory
» Intrinsic spin
» Pauli’s principle
Field quantization
» Klein-Gordon fields
» Dirac fields
» Propagator and causality
Interacting field theory
» S-matrix theory
» Perturbation expansion
» Photon as gauge particle
» Elementary processes
Renormalization = Physically observed parameters:
» spin-magnetic momentum (definite),
» electron mass (cancelled divergences),
» electric charge of electron (leaving divergence).
Renormalization Group and Higgs mechanism.
» The origin of the charge of electron,
» The origin of the electron mass.

v

v

v

v



James Clerk Maxwell

-

The work of James Clerk Maxwell changed the world forever.
by Albert Einstein
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